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Effect of quantum group invariance on trapped Fermi gases
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We study the properties of a thermodynamic system having the symmetry of a quantum group and inter-
acting with a harmonic potential. We calculate the dependence of the chemical potential, heat capacity, and
spatial distribution of the gas on the quantum group parangeterd the number of spatial dimensioBs In
addition, we consider a fourth-order interaction in the quantum group figldsd calculate the ground state
energy up to first ordef.S1063-651X%98)13809-4

PACS numbe(s): 05.30—d

[. INTRODUCTION that forg=1 they become standard fermionic operators.
A quantum group invariant Hamiltonian is, at the mo-

The recent observations of Bose-Einstein condensatioment, a mathematical model with phenomenological impli-
[1-3] has triggered numerous theoretical investigations ortations that depart from those predicted by either boson or
the behavior of a trapped Bose gas under experimental coriermion gases. This departure is measured by the value of the
ditions. Furthermore, the stable fermionic isotope of lithium,parameteqq. There is, at present, no phenomenological evi-
®Li, has been trapped and cooled in a similar way to itsdence that quantum group symmetries are realized in any
bosonic counterparfLi [4]. One of the most interesting as- particular thermodynamic system. Since the operatossat-
pects of a trapped Fermi gas is that, as reported in Refssfy the Pauli exclusion principle and their representation in
[5,6], for a sufficiently strong trapping magnetic field a BCS terms of ordinary fermions is not linear, any Hamiltonian
transition is expected to occur at densities and temperaturgritten in terms of them can be interpreted as an interacting
experimentally attainable. The critical temperature and onefermion system. Our main motivation focuses on investigat-
particle excitations for the superfluid phase transition havemg the role that these interactions, required by quantum

also been studief¥,8]. Two recent article§9,10] on trapped 4o invariance, may play at low temperatures. The inter-

Fermi gases, in which the BCS transition is excluded, ir?'action term is fixed by the quantum group and its strength is

clude a study on their thermodynamic behavior in harmon'cparametrized by Naturally, for q=1, these interactions
traps. will vanish and our results will reduce to the case of a gas

The purpose of this paper is to study the behavior of g ith two fermion species interacting with a harmonic poten
thermodynamic system having the symmetry of a quantum. oy i
y Y 9 Y Y g ial. Within the context of our results, energy related data

. . . ..t
group. The role of quantum groups in physics has its origi . ) .
in the quantum inverse scattering mettdd] and the pos- nfrom experiments with trapped Fermi gases can tell us

sible relevance they may play in other fields of physics hadvnether quantum group symmetry is realized in the behavior
been the focus of great interest ever since. A quantum grouf®f 'é@l gases. A comparison with the results reported in this
as compared with a classical group, contains an additiondl@P€r W'”. |qd|cate whether a particular, and presumably
parametery. In the quantum inverse scattering method thesmall, deviation of the parametgrfrom the standard value
parameter acquires a physical meaning through its relationd=1 fits the experimental data. Therefore, the calculations
with Planck’s constant. In two recent articld,13 we con- ~ considered here will help answer questions regarding the
sidered the system represented by the Hamiltorftgn  POssible releyance of quantum groups in a ther_modynamlc
=3, KCI—Di(K)‘I)i(K), i=1,2, with the operator®, and the system. In this paper we study the therm_odyngmlcs o.f a sys-
R c , . . tem composed of quantum group fermioWs interacting

adjoint @; satisfying algebraic relations that are covariant, i, 4 harmonic potential. For simplicity, we will consider
u_nder the quantum group §(2). Forg=1, the operators the case of SK(2).
®; and®; become standard creation and annihilation boson This paper is organized as follows. Section Il is a very
operators respectively. In this model, Bose-Einstein condenprief introduction to the formalism we will use in the follow-
sation is realized as a second-order phase transition and thiy sections. A detailed discussion on quantum groups can
heat capacity becomes discontinuous at the critical temperge found in Ref[15]. In Sec. Il we calculate the properties
ture in one, two, and three dimensions, even without thef this model interacting with an isotropic harmonic oscilla-
presence of an external potential. In a similar fashion, ongor. In particular, we calculate the chemical potential, inter-
can defing[14] a set of operatord; and ¥;, with corre- nal energy, heat capacity, and the particle distributioi at
sponding quantum group covariant algebraic relations, suck 0 for an arbitrary number of spatial dimensidds In Sec.

IV we introduce a fourth-ordeW interaction and calculate

the ground state energy up to first order. In Sec. V we sum-

*Electronic address: ubriaco@lItp.upr.clu.edu marize our results and compare them with ¢el case.
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Il. FREE SU4(2) FERMION GAS The grand partition function is given by

The quantum group GJ(2,C) consists of the set of ma- 72
trices T=(2)) with noncommuting elements generating the 2=[] (1+2e AE W 4 g BIELA *+D-2u])  (g)
algebraA, [16], “
which forq=1 becomes the partition function for a gas with

two fermion species. The occupation numKey is a func-
tion of the energy according to

ab=q 'ba, ac=q lca,
bc=cb, dc=qcd,

db=gbd, da—ad=(q—q 1)bc, )

+e AR’z
with the quantum determinant (n(E))= f(z,q) ©
det,T=ad—q bc. (2)  wherez is the fugacity and the function

The quantum determinant is defined such that it belongs to

the center of the algebra. The relatiqid$ have the remark- f(z,q):eﬁEZ—1+2+e—5Eq*ZZ.

able property that if the elementsb,c,d of T commute

with the elements’,b’,c’,d" of T', then the elements of For q>1 the function(n(E)) is very similar to the Fermi
the matrixTT’ also generatéd,. Setting defT=1, with the  function. The chemical potential at zero temperature is inde-

unitary conditiong17] pendent of the number of space dimensiéns
a=d, b=-q lc, 3) q 2+1
ro(4>1)= ——5— ko, (10)

leads to the quantum group §2) with qeR. It is clear

that the quantum group $(2)—SU(2) as the parameter \here 4, is the Fermi energy fog=1. Forq<1, (n(E))

g—1. In Ref.[14] we introduced a set Qf operatm.[g th_at departs considerably from the Fermi case. 0, states

theg—1 limit. This is accomplished by the set of relations wijth energiesq?uy(q)<E<puo(q) have occupation num-
bers(nY=1/2. The chemical potential &=0 andgq<1 is

{¥,,W,}=1, related to the Fermi energy for=1 as
(¥, W}=1-(1-q )V, ¥y, 2P
mo(q<1)= 1iq0| Mo 11
U W,=—q¥, ¥y, @ g
_ — The total number of particles in the thermodynamic limit is
WV Wo=—qW¥,Vy, given by the integral

Y, Wi =0={V,,¥,}. ”
{W,, ¥} {¥,, W5} <N>:2f0 g(E){(n(E))dE, (12

Equations(4) are covariant under the action of the group

SUy(2), whereg(E) is the density of states.
2
'\Ifizz Tijqr]., (5) lll. SU4(2) FERMION GAS IN A HARMONIC
=1 OSCILLATOR

and they become the SU(2) covariant fermion algebra for The single-particle levels, excluding the zero-point en-
q=1. According to Eqs(4), the operatora/; have a repre- ergy, are given by the well known formula
sentation in terms of ordinary fermionf , b
E=fw, n;. (13)
_ i=1

Vi=ga[1+(q = Dgdial, Wo=io,  (6)

. As an approximation we consider a continuous spectrum

with the corresponding equations for the adjoint. There-  with density of states
fore, the simplest quantum group invariant Hamiltonign

. . . . D-1
=3 ¥ ¥, is written in terms of fermion operators as

E)Y=— —+—. 14
9 (hw)?(D—1)! 19

+ +
H 2 Ed et b2 A more accurate expression for the density of states was
. . . provided in Ref.[18], where it was applied to the Bose-
Q™ =D thr w2, P2l (7)  Einstein condensation of a finite number of bosons in a har-
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FIG. 1. Chemical potentigk(q) for D=3 as a function off for FIG. 2. Heat capacity, as given in E(L9), for D=3 and the
the parameter values=0.2,1,2. valuesq=0.2,1,2.
. . . dln Z
monic oscillator trap, and in Reff10] for the study of a free U=- B + u(N)
fermion gas interacting with a harmonic oscillator potential.
Equation(14) will be sufficient for our purposes. w 2+z(1+q*2)e*ﬁq72E
=| Eg9(E dE. 16
o E om0 (19

A. Chemical potential

The chemical potential for low temperatures can be obThe integral in Eq(16) can be solved for low temperatures
tained by splitting the integral in Eq12) into the intervals by using the same kind of approximation we used to obtain
[0a%x(a)], [9?x(q),x(a)], and[u(q),] for g<1 and  the chemical potential. Far+1 the internal energy is given

[0,2u(9)/(1+972)], [2wm(a)/(1+97%),q°«(q)], and by the equations
[g2u(q),] for g>1 leading to the results

U(q<1) D 2(D+l)/D
1D 2D Ny oMo 2D\ 1D
ua<1) [ 2 1-g%° kT (N) (D+1)(1+q?P)
- 2D N 2D o
Mo 1+q 1+q9g“” Mo . (1_q20)2| 25
1| P 240 28 gy
+(D—1)( 5 ) (15
(1+q2D)1/D kT 2
1?2 1/KT\2 XZT P 17
x| In?3 -2.88/5| —| ,
1+g%° 2\ o
U(g>1) D [1+q 2 1.64 (kT
-2 2 TNy 2 Dr1 - 2<_ (18
p(g>1) 1+q77 1.64 (KT (N) 1492\ ko
= 1-(D-1)—————| —
o 2 | (1+q2)2\ 4o . _
Figure 2 shows a graph of the heat capacity
A simple inspection shows that for<1 the chemical poten-
. . du U lJlou u
tial depends also linearly on the temperature. In contrast to C=—==MD+1)=+2—| —=—= (19
the fermion case, where is constant foD = 1, the function a T oz\oT T

1(q<1) decreases witfl. Figure 1 shows a graph of the

chemical potential fog=0.2,1,2, obtained from a numerical for D=3 and g=0.2,1,2, which results from a numerical

calculation of Eq.(12). The chemical potential at zero tem- calculation of Eq(19).

perature ug(q) is independent oD for g>1. For q<1,

uo(q) decreases ab increases. For low temperatures, the

function «(q<1) depends more strongly apas we reduce

the number of dimensions. In the semiclassical approximation, the Thomas-Fermi ap-
proximation, the spatial distribution is given by the integral

C. Particle distribution at T=0

B. Internal energy and heat capacity 2P

1\° =
R e ZJ n(p,r))p°® tdp. (20
The internal energy is obtained from the partition function " F(D/Z)(foﬁ) o< (P.r)p p- (20
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FIG. 3. Spatial distribution fobD=3 as a function of /rg.

Replacing Eq(9) and defining the variabl& =p?/2m, this
integral becomes

(D—2)/2

D2 D12 o
(e, T) 2 (2m) J

" T(D2) (27h)° o

eB(r—K) 4 gBlutp—(1+q K]

X 1+2e BK-p) 4 eﬁ[,u+M—(l+q72)K] dK,
(21
where for convenience we have defined
. 1 _—
p=p(q) = 5 Mo (22
and
- q 2
m=pu(q)— mezrz- (23

For g>1 we haveuo>uo and Eq.(21) for T=0 can be

easily calculated if we divide the integral into the intervals

[O-ELO], [[Lo,(gto+l~to)(1+q72)]y [(ot mo)(1+973),
a%mol, and[q?ug,], leading to the result

2\ D/2
rKn@zZA(l——E) . 9>1, (24)
r

F

where

27P2 (D—1)1(N)

AST®R) 2.0

andrg= \/Z,uolmw2 is the Fermi radius fog= 1. This equa-

MARCELO R. UBRIACO

PRE 58
/ 2 , r2 1+q2D)1/D D/2
n(r,00=A -—
(r-0) 1+g%° a rz\ 2
r2(1+q?>| P D/2
1= — ] (25)
'e
for r<[2/(1+9?°)]¥®Pqrg and
2 r2(1+q2° 1/p D2
n(r,0)=A 1+ 1—2 5 (26)

for r=[2/(1+q?°)1¥®qr . From this result we see that the
gas is less confined fog<l. This becomes an expected
result after rewriting the Hamiltonian in terms of fermion
operators. The fermion interaction term induced by the re-
quirement of quantum group invariance becomes more repul-
sive as we decrease the valuegobelow g=1.

IV. HIGHER-ORDER INTERACTIONS

In the preceding section we studied the simplest quantum
group invariant system interacting with a harmonic potential.
According to Egs(6), introducing interactions between the
operatorsV; will lead to higher-order interaction terms when
the Hamiltonian is rewritten in terms of ordinary fermion
operators. We consider the simple interaction Hamiltonian

Hi=9g E

’ ’ \Ppi'l\llpé'zq,pz’z\lfpl'l7
P1:P1:P2:P2

(27)

where {¥,;, ¥, }=0 Vi,j and p’'#p, and quantum
group matrix elementga(p;),b(p;),c(p;),d(p;)] commute
with the sef a(p;),b(p;).c(p;),d(p;)] fori#j. In Eq.(27)
the couplingg is related to the scattering lengséhby

_ Arrah? 08
9=—ym (29

and the summation is over all momenta satisfying
P1t+P2=Pp1tpe. (29

The first-order correction to the energy of the system is given
by those terms witlp; =p, andp,=p,. Again, it is conve-
nient to rewrite the Hamiltonian in terms of ordinary fermi-
ons. Replacing Eq(6) in Eq. (27) leads to the first-order
correction for the energy
N)? N
E<1>=g%+g(q2—1)%§ NpiNpz2,  (30)

whereN, ;= z,/;de/i and we took the equilibrium values

N
> Np,i=%. (31)
p

tion shows that the spatial distribution is independent of the

parameterg for all valuesq=1 (see Fig. 3. A numerical
calculation of Eq.(21) shows that this independence gn
remains valid forT>0.

Forg<1, a similar calculation leads to the result

In the ground state, all the fermions occupy the states with
lower momenta such that the stiN, 1N, ,=(N)/2. Thus,

for the ground state first-order correction we obtain the
simple expression
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FIG. 4. Dependence of the functiap=4E,/g(N)? on the pa-
rameterq for na®=10" %, scattering lengtta~5x10"" cm, and
trap sizeL~5x10"% cm.

2 (N)*

E¢=ga 2 (32)

Equation (32) shows that the first-order correction to the "¢
ground state energy decreases as we increase the value of #

parameteq. From Eqs(17) and(18) for T=0 we write, up
to first order, for the ground state energy=E®)+E{",

_D(D!)l/D <N>l+1/D 72<N>2
Bo(@<l)=—p577 (17 q%0)™ R e
(33
D(D')lID <N>l+l/D - - <N>2
Eo(q>1)= —537 PYEETS (1+9 %)hw+gq ZT'
(34

Figure 4 shows the ground state functieg=4E,/g(N)?
for D=3. We have assumed the case of a dilute gas,
=105, with scattering lengtta~5x10"" cm, trap size
L~5x10* cm, andm=10 2° kg. The value of the pa-
rameterq is restricted, forq<1, by the conditionE§"
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<EW. For the case displayed in Fig. 4 the range of allowed
values is given by 0.08q< .

V. CONCLUSIONS

In this paper we studied the thermodynamics of the sim-
plest quantum group invariant Hamiltonian including a har-
monic potential. Forg=1, this system becomes a fermion
gas with two degrees of freedom in a harmonic potential trap
in a D-dimensional space. We analyzed this model by using
the representation of the operatobs in terms of fermion
operators. A calculation of the chemical potential shows that
for q<1 it acquires a linear temperature-dependent term not
present in the fermion, S@), case. One consequence of hav-
ing this linear term is that fob =1 the chemical potential is
not constant but decreases with the temperature. At moderate
temperatures the heat capacity increases gitind at high
temperaturesC=Dk(N), becoming independent of the
value ofqg. A calculation in the Thomas-Fermi approxima-
tion at T=0 shows that the particle spatial distribution is
independent ofg for q=1. For q<1, if we decrease the
value ofqg, it makes the interaction more repulsive and thus
the gas becomes less confined. Since this fermion interaction
vanishes forg=1, the depletion of the gas far<1 is a
[ect consequence of imposing quantum group invariance.
In Sec. IV we included a fourth-order interaction in terms of
the ¥ operators and calculated the ground state energy up to
first order. This fourth-order interaction becomes a sixth-
order interaction in terms of fermion operators. A graph of
the functione illustrates that even small deviations from the
standard valugi=1 have a nontrivial effect on the ground
state energy. The ground state energy decreases as the value
of g increases and it becomes approximately constant for
>5,

Our main goal has been to study the phenomenological
aspects of a model having the quantum group(&Y as its
symmetry group. In the same fashion that a quantum group is
considered a deformation of a classical Lie group, we could
consider the SK[2) symmetry of our model as the result of
a small breaking of S(2) spin symmetry. An alternative
view would be to regard S}§2) as an additional symmetry
independent of the spin degrees of freedom.
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