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Effect of quantum group invariance on trapped Fermi gases

Marcelo R. Ubriaco*
Laboratory of Theoretical Physics, Department of Physics, University of Puerto Rico, P.O. Box 23343, Rı´o Piedras,

Puerto Rico 00931-3343
~Received 24 April 1998!

We study the properties of a thermodynamic system having the symmetry of a quantum group and inter-
acting with a harmonic potential. We calculate the dependence of the chemical potential, heat capacity, and
spatial distribution of the gas on the quantum group parameterq and the number of spatial dimensionsD. In
addition, we consider a fourth-order interaction in the quantum group fieldsC and calculate the ground state
energy up to first order.@S1063-651X~98!13809-6#

PACS number~s!: 05.30.2d
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I. INTRODUCTION

The recent observations of Bose-Einstein condensa
@1–3# has triggered numerous theoretical investigations
the behavior of a trapped Bose gas under experimental
ditions. Furthermore, the stable fermionic isotope of lithiu
6Li, has been trapped and cooled in a similar way to
bosonic counterpart7Li @4#. One of the most interesting as
pects of a trapped Fermi gas is that, as reported in R
@5,6#, for a sufficiently strong trapping magnetic field a BC
transition is expected to occur at densities and temperat
experimentally attainable. The critical temperature and o
particle excitations for the superfluid phase transition h
also been studied@7,8#. Two recent articles@9,10# on trapped
Fermi gases, in which the BCS transition is excluded,
clude a study on their thermodynamic behavior in harmo
traps.

The purpose of this paper is to study the behavior o
thermodynamic system having the symmetry of a quan
group. The role of quantum groups in physics has its ori
in the quantum inverse scattering method@11# and the pos-
sible relevance they may play in other fields of physics
been the focus of great interest ever since. A quantum gr
as compared with a classical group, contains an additio
parameterq. In the quantum inverse scattering method t
parameterq acquires a physical meaning through its relati
with Planck’s constant. In two recent articles@12,13# we con-
sidered the system represented by the HamiltonianHB

5( i ,kF̄ i(k)F i(k), i 51,2, with the operatorsF i and the
adjoint F̄ i satisfying algebraic relations that are covaria
under the quantum group SUq(2). For q51, the operators
F̄ i andF i become standard creation and annihilation bo
operators respectively. In this model, Bose-Einstein cond
sation is realized as a second-order phase transition an
heat capacity becomes discontinuous at the critical temp
ture in one, two, and three dimensions, even without
presence of an external potential. In a similar fashion,
can define@14# a set of operatorsC i and C̄ i , with corre-
sponding quantum group covariant algebraic relations, s
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that for q51 they become standard fermionic operators.
A quantum group invariant Hamiltonian is, at the m

ment, a mathematical model with phenomenological imp
cations that depart from those predicted by either boson
fermion gases. This departure is measured by the value o
parameterq. There is, at present, no phenomenological e
dence that quantum group symmetries are realized in
particular thermodynamic system. Since the operatorsC sat-
isfy the Pauli exclusion principle and their representation
terms of ordinary fermionsc is not linear, any Hamiltonian
written in terms of them can be interpreted as an interac
fermion system. Our main motivation focuses on investig
ing the role that these interactions, required by quant
group invariance, may play at low temperatures. The in
action term is fixed by the quantum group and its strength
parametrized byq. Naturally, for q51, these interactions
will vanish and our results will reduce to the case of a g
with two fermion species interacting with a harmonic pote
tial. Within the context of our results, energy related da
from experiments with trapped Fermi gases can tell
whether quantum group symmetry is realized in the beha
of real gases. A comparison with the results reported in
paper will indicate whether a particular, and presuma
small, deviation of the parameterq from the standard value
q51 fits the experimental data. Therefore, the calculatio
considered here will help answer questions regarding
possible relevance of quantum groups in a thermodyna
system. In this paper we study the thermodynamics of a s
tem composed of quantum group fermionsC i interacting
with a harmonic potential. For simplicity, we will conside
the case of SUq(2).

This paper is organized as follows. Section II is a ve
brief introduction to the formalism we will use in the follow
ing sections. A detailed discussion on quantum groups
be found in Ref.@15#. In Sec. III we calculate the propertie
of this model interacting with an isotropic harmonic oscill
tor. In particular, we calculate the chemical potential, int
nal energy, heat capacity, and the particle distribution aT
50 for an arbitrary number of spatial dimensionsD. In Sec.
IV we introduce a fourth-orderC interaction and calculate
the ground state energy up to first order. In Sec. V we su
marize our results and compare them with theq51 case.
4191 © 1998 The American Physical Society
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II. FREE SUq„2… FERMION GAS

The quantum group GLq(2,C) consists of the set of ma
trices T5(c

a
d
b) with noncommuting elements generating t

algebraAq @16#,

ab5q21ba, ac5q21ca,

bc5cb, dc5qcd,

db5qbd, da2ad5~q2q21!bc, ~1!

with the quantum determinant

detqT5ad2q21bc. ~2!

The quantum determinant is defined such that it belong
the center of the algebra. The relations~1! have the remark-
able property that if the elementsa,b,c,d of T commute
with the elementsa8,b8,c8,d8 of T8, then the elements o
the matrixTT8 also generateAq . Setting detqT51, with the
unitary conditions@17#

ā5d, b̄52q21c, ~3!

leads to the quantum group SUq(2) with qPR. It is clear
that the quantum group SUq(2)→SU(2) as the paramete
q→1. In Ref. @14# we introduced a set of operatorsC i that
transform under SUq(2) and become ordinary fermionsc i in
the q→1 limit. This is accomplished by the set of relation

$C2 ,C̄2%51,

$C1 ,C̄1%512~12q22!C̄2C2 ,

C1C252qC2C1 , ~4!

C̄1C252qC2C̄1 ,

$C1 ,C1%505$C2 ,C2%.

Equations~4! are covariant under the action of the gro
SUq(2),

C i5(
j 51

2

Ti j C j , ~5!

and they become the SU(2) covariant fermion algebra
q51. According to Eqs.~4!, the operatorsC j have a repre-
sentation in terms of ordinary fermionsc i ,

C15c1@11~q2121!c2
†c2#, C25c2 , ~6!

with the corresponding equations for the adjointC̄ i . There-
fore, the simplest quantum group invariant HamiltonianH
5(kC̄kCk is written in terms of fermion operators as

H5(
k

Ek@c1,k
† c1,k1c2,k

† c2,k

1~q2221!c1,k
† c1,kc2,k

† c2,k#. ~7!
to

r

The grand partition function is given by

Z5)
k

~112e2b~Ek2m!1e2b[Ek~q2211!22m] !, ~8!

which for q51 becomes the partition function for a gas wi
two fermion species. The occupation number^n& is a func-
tion of the energy according to

^n~E!&5
11e2bEq22

z

f ~z,q!
, ~9!

wherez is the fugacity and the function

f ~z,q!5ebEz21121e2bEq22
z.

For q.1 the function^n(E)& is very similar to the Fermi
function. The chemical potential at zero temperature is in
pendent of the number of space dimensionsD,

m0~q.1!5
q2211

2
m0 , ~10!

wherem0 is the Fermi energy forq51. For q,1, ^n(E)&
departs considerably from the Fermi case. AtT50, states
with energies 0<E<q2m0(q) are fully occupied and those
with energiesq2m0(q)<E<m0(q) have occupation num
bers^n&51/2. The chemical potential atT50 andq,1 is
related to the Fermi energy forq51 as

m0~q,1!5S 2

11qDD 2/D

m0 . ~11!

The total number of particles in the thermodynamic limit
given by the integral

^N&52E
0

`

g~E!^n~E!&dE, ~12!

whereg(E) is the density of states.

III. SU q„2… FERMION GAS IN A HARMONIC
OSCILLATOR

The single-particle levels, excluding the zero-point e
ergy, are given by the well known formula

E5\v(
j 51

D

nj . ~13!

As an approximation we consider a continuous spectr
with density of states

g~E!5
ED21

~\v!D~D21!!
. ~14!

A more accurate expression for the density of states
provided in Ref.@18#, where it was applied to the Bose
Einstein condensation of a finite number of bosons in a h
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monic oscillator trap, and in Ref.@10# for the study of a free
fermion gas interacting with a harmonic oscillator potenti
Equation~14! will be sufficient for our purposes.

A. Chemical potential

The chemical potential for low temperatures can be
tained by splitting the integral in Eq.~12! into the intervals
@0,q2m(q)#, @q2m(q),m(q)#, and @m(q),`# for q,1 and
@0,2m(q)/(11q22)#, @2m(q)/(11q22),q2m(q)#, and
@q2m(q),`# for q.1 leading to the results

m~q,1!

m0
5S 2

11q2DD 1/D

2 ln 3
12q2D

11q2D

kT

m0

1~D21!S 11q2D

2 D 1/D

3F ln23S 12q2D

11q2DD 2

22.88G1

2S kT

m0
D 2

,

~15!

m~q.1!

m0
5

11q22

2 F12~D21!
1.64

~11q22!2S kT

m0
D 2G .

A simple inspection shows that forq,1 the chemical poten
tial depends also linearly on the temperature. In contras
the fermion case, wherem is constant forD51, the function
m(q,1) decreases withT. Figure 1 shows a graph of th
chemical potential forq50.2,1,2, obtained from a numerica
calculation of Eq.~12!. The chemical potential at zero tem
peraturem0(q) is independent ofD for q.1. For q,1,
m0(q) decreases asD increases. For low temperatures, t
functionm(q,1) depends more strongly onq as we reduce
the number of dimensionsD.

B. Internal energy and heat capacity

The internal energy is obtained from the partition functi

FIG. 1. Chemical potentialm(q) for D53 as a function ofT for
the parameter valuesq50.2,1,2.
.

-

to

U52
] ln Z

]b
1m^N&

5E
0

`

E g~E!
21z~11q22!e2bq22E

f ~z,q!
dE. ~16!

The integral in Eq.~16! can be solved for low temperature
by using the same kind of approximation we used to obt
the chemical potential. ForqÞ1 the internal energy is given
by the equations

U~q,1!

^N&
5

D

2
m0

2~D11!/D

~D11!~11q2D!1/D

1
D

2
m0S 2.882

~12q2D!2

~11q2D!2
ln23D

3
~11q2D!1/D

21/D S kT

m0
D 2

, ~17!

U~q.1!

^N&
5

D

2
m0F11q22

D11
1

1.64

11q22S kT

m0
D G . ~18!

Figure 2 shows a graph of the heat capacity

C5
]U

]T
5~D11!

U

T
1zb

]U

]z S ]m

]T
2

m

T D ~19!

for D53 and q50.2,1,2, which results from a numerica
calculation of Eq.~19!.

C. Particle distribution at T50

In the semiclassical approximation, the Thomas-Fermi
proximation, the spatial distribution is given by the integr

n~r ,T!5
2pD/2

G~D/2!S 1

2p\ D D

2E
0

`

^n~p,r !&pD21dp. ~20!

FIG. 2. Heat capacity, as given in Eq.~19!, for D53 and the
valuesq50.2,1,2.
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Replacing Eq.~9! and defining the variableK5p2/2m, this
integral becomes

n~r ,T!5
2pD/2

G~D/2!

~2m!D/2

~2p\!DE0

`

K ~D22!/2

3
eb~m̂2K !1eb[ m̂1m̃2~11q22!K]

112e2b~K2m̂ !1eb[ m̂1m̃2~11q22!K]
dK,

~21!

where for convenience we have defined

m̂5m~q!2
1

2
mv2r 2 ~22!

and

m̃5m~q!2
q22

2
mv2r 2. ~23!

For q.1 we havem̃0.m̂0 and Eq.~21! for T50 can be
easily calculated if we divide the integral into the interva

@0,m̂0#, @m̂0 ,(m̂01m̃0)(11q22)#, @(m̂01m̃0)(11q22),
q2m̃0#, and@q2m̃0 ,`#, leading to the result

n~r ,0!52LS 12
r 2

r F
2 D D/2

, q.1, ~24!

where

L5
2pD/2

G~D/2!

~D21!! ^N&

2pDr F
D

andr F5A2m0 /mv2 is the Fermi radius forq51. This equa-
tion shows that the spatial distribution is independent of
parameterq for all valuesq>1 ~see Fig. 3!. A numerical
calculation of Eq.~21! shows that this independence onq
remains valid forT.0.

For q,1, a similar calculation leads to the result

FIG. 3. Spatial distribution forD53 as a function ofr /r F .
e

n~r ,0!5LA 2

11q2DH Fq22
r 2

r F
2 S 11q2D

2 D 1/DGD/2

1F12
r 2

r F
2 S 11q2D

2 D 1/DGD/2J ~25!

for r ,@2/(11q2D)#1/2DqrF and

n~r ,0!5LA 2

11q2DF12
r 2

r F
2 S 11q2D

2 D 1/DGD/2

~26!

for r>@2/(11q2D)#1/2DqrF . From this result we see that th
gas is less confined forq,1. This becomes an expecte
result after rewriting the Hamiltonian in terms of fermio
operators. The fermion interaction term induced by the
quirement of quantum group invariance becomes more re
sive as we decrease the value ofq below q51.

IV. HIGHER-ORDER INTERACTIONS

In the preceding section we studied the simplest quan
group invariant system interacting with a harmonic potent
According to Eqs.~6!, introducing interactions between th
operatorsC i will lead to higher-order interaction terms whe
the Hamiltonian is rewritten in terms of ordinary fermio
operators. We consider the simple interaction Hamiltonia

HI5g (
p18 ,p1 ,p28 ,p2

C̄p
18,1C̄p

28,2Cp2,2Cp1,1 , ~27!

where $Cp8,i ,Cp, j%50 ; i , j and p8Þp, and quantum
group matrix elements@a(pi),b(pi),c(pi),d(pi)# commute
with the set@a(pj ),b(pj ),c(pj ),d(pj )# for iÞ j . In Eq. ~27!
the couplingg is related to the scattering lengtha by

g5
4pa\2

Vm
~28!

and the summation is over all momenta satisfying

p181p285p11p2 . ~29!

The first-order correction to the energy of the system is giv
by those terms withp185p1 andp285p2 . Again, it is conve-
nient to rewrite the Hamiltonian in terms of ordinary ferm
ons. Replacing Eq.~6! in Eq. ~27! leads to the first-order
correction for the energy

E~1!5g
^N&2

4
1g~q2221!

^N&
2 (

p
Np,1Np,2 , ~30!

whereNp,i5c i
†c i and we took the equilibrium values

(
p

Np,i5
^N&
2

. ~31!

In the ground state, all the fermions occupy the states w
lower momenta such that the sum(pNp,1Np,25^N&/2. Thus,
for the ground state first-order correction we obtain t
simple expression
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E0
~1!5gq22 ^N&2

4
. ~32!

Equation ~32! shows that the first-order correction to th
ground state energy decreases as we increase the value
parameterq. From Eqs.~17! and~18! for T50 we write, up
to first order, for the ground state energyE05E0

(0)1E0
(1) ,

E0~q,1!5
D~D! !1/D

D11

^N&111/D

~11q2D!1/D
\v1gq22 ^N&2

4
,

~33!

E0~q.1!5
D~D! !1/D

D11

^N&111/D

2111/D
~11q22!\v1gq22 ^N&2

4
.

~34!

Figure 4 shows the ground state function«054E0 /g^N&2

for D53. We have assumed the case of a dilute gas,na3

51026, with scattering lengtha'531027 cm, trap size
L'531024 cm, andm510225 kg. The value of the pa-
rameter q is restricted, forq,1, by the conditionE0

(1)

FIG. 4. Dependence of the function«054E0 /g^N&2 on the pa-
rameterq for na351026, scattering lengtha'531027 cm, and
trap sizeL'531024 cm.
an
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.

the

,E0
(0) . For the case displayed in Fig. 4 the range of allow

values is given by 0.09,q,`.

V. CONCLUSIONS

In this paper we studied the thermodynamics of the s
plest quantum group invariant Hamiltonian including a h
monic potential. Forq51, this system becomes a fermio
gas with two degrees of freedom in a harmonic potential t
in a D-dimensional space. We analyzed this model by us
the representation of the operatorsC i in terms of fermion
operators. A calculation of the chemical potential shows t
for q,1 it acquires a linear temperature-dependent term
present in the fermion, SU~2!, case. One consequence of ha
ing this linear term is that forD51 the chemical potential is
not constant but decreases with the temperature. At mode
temperatures the heat capacity increases withq and at high
temperaturesC5Dk^N&, becoming independent of th
value of q. A calculation in the Thomas-Fermi approxima
tion at T50 shows that the particle spatial distribution
independent ofq for q>1. For q,1, if we decrease the
value ofq, it makes the interaction more repulsive and th
the gas becomes less confined. Since this fermion interac
vanishes forq51, the depletion of the gas forq,1 is a
direct consequence of imposing quantum group invarian
In Sec. IV we included a fourth-order interaction in terms
theC operators and calculated the ground state energy u
first order. This fourth-order interaction becomes a six
order interaction in terms of fermion operators. A graph
the function«0 illustrates that even small deviations from th
standard valueq51 have a nontrivial effect on the groun
state energy. The ground state energy decreases as the
of q increases and it becomes approximately constant foq
.5.

Our main goal has been to study the phenomenolog
aspects of a model having the quantum group SUq(2) as its
symmetry group. In the same fashion that a quantum grou
considered a deformation of a classical Lie group, we co
consider the SUq(2) symmetry of our model as the result o
a small breaking of SU~2! spin symmetry. An alternative
view would be to regard SUq(2) as an additional symmetr
independent of the spin degrees of freedom.
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